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Abstract

Diffusion models can generate highly realistic samples, but do they learn the latent1

rules that govern a distribution, and if so, what kind of rule can they learn? We2

address this question using a controlled group-parity benchmark on 6×6 binary im-3

ages, where each group of G bits must satisfy an even-parity constraint. This setup4

allows us to precisely tune rule complexity via G and measure both correctness and5

memorization at the group and sample levels. Using EDM-parameterized Diffusion6

Transformers of varying depth, we find: (i) learnability depends jointly on G and7

depth, with deeper models extending—but not eliminating—the range of learnable8

rules; (ii) successful rule learning exhibits a sharp early transition in accuracy9

that precedes memorization, creating a temporal window for generalization; (iii)10

memorization onset follows a steps-per-sample scaling law and is delayed by larger11

datasets. Theoretically, an energy/score analysis explains the depth dependence12

through the global multiplicative term in the parity score. Together, these results of-13

fer a principled testbed and new insights into the interplay between rule complexity,14

rule learning, and memorization in diffusion models.15

1 Motivation16

Recent diffusion models generate strikingly realistic samples across images, audio, and science data.17

Yet beyond perceptual quality lies a scientific question: do these models internalize latent rules18

that govern a data distribution and generate accordingly, if so, what kind of rule can they learn?19

Answering this requires tasks where the underlying structure is precise, global, and tunable.20

We study this question through the lens of parity, a canonical discrete rule that couples many21

variables multiplicatively and is known to be challenging to learn. Concretely, we construct a22

controlled benchmark of 6×6 binary images partitioned into D/G disjoint groups of size G, where23

each group must satisfy even parity. This setting lets us probe whether unconditional diffusion models24

can (i) learn and enforce a global, non-local rule; (ii) recombine valid parts into novel solutions; and25

(iii) avoid overfitting individual training examples.26

Two features make this benchmark especially revealing. First, rule complexity is tunable via the group27

size G: small G requires only local interactions, whereas large G demands long-range multiplicative28

dependencies across many bits. Second, we can cleanly separate correctness from memorization. We29

evaluate both per-group and per-sample parity accuracy, and we measure memorization at the group30

and sample levels by exact match against the training set. This enables a direct view of “creativity”31

as correct but novel generations that were not seen during training.32

Using EDM-parameterized diffusion transformers (DiT) with controlled depth and capacity, we33

uncover three consistent phenomena. (1) Learnability depends jointly on rule complexity and34

depth. Small G is learned robustly, while accuracy collapses as G increases; deeper DiTs push the35
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frontier of learnable G but do not eliminate the barrier. (2) There is a sharp, early rule-learning36

transition that precedes memorization. When learning succeeds, accuracy rises abruptly well before37

memorization increases, yielding a clear temporal separation that supports early stopping to preserve38

generalization. (3) Memorization follows a steps-per-sample law. Its onset is largely synchronized39

across G and aligns when time is measured as gradient updates per example; larger datasets reliably40

delay memorization without slowing rule acquisition. A simple energy/score analysis clarifies why:41

the parity score contains a degree-G monomial coupling all bits, which is poorly aligned with the42

predominantly pairwise structure induced by a single attention block, making depth helpful but not43

universally sufficient.44

2 Backgrounds45

Rule learning in Diffusion models There have been several works along this direction. Wang et al.46

(2024) showed that unconditional diffusion models can learn to generate according to some of the47

rules in RAVEN’s progression matrices encoded as integer arrays, but not all of them. In particular,48

rules such as the logical operation (AND, OR, XOR) over sets of attribute have been showed to49

be hard to learn. Similarly, Han et al. (2025) examined rule learning in the pixel space, where the50

diffusion models can learn the coarse proportional relationship between bars and shadows length, but51

not precisely, there is usually a non-zero error from the precise rule defined in training set. These52

previous works prompt this study, where we want to examine what kind of rules can be learned. In53

this case, we focus on the discrete and abstract rule case.54

Memorization and Creativity in Diffusion models The question of when diffusion models are55

able to generate genuinely novel samples matters both scientifically and for mitigating data leakage.56

From the rule learning perspective, the model that truly learn the rule should not simply recapitulate57

the training set, but learn the data manifold underlying it. From the score-matching perspective, if58

the learned score exactly matches that of the empirical data distribution, then the reverse process59

reproduces that empirical distribution, and thus does not create new samples beyond the training60

set (Kamb & Ganguli, 2024; Li et al., 2024; Wang & Vastola, 2024). Yet high-quality diffusion61

models routinely generate images that are not identical copies of images from the training set. Kamb62

& Ganguli (2024) take an important step toward reconciling this: when the score network is a63

simple CNN, its inductive biases (locality and translation equivariance) favor patch wise composition,64

enabling global samples that are novel while remaining locally consistent “mosaics.” Similarly, in65

Wang & Pehlevan (2025), they noticed score networks with different architectural constraints will66

learn various approximation of the dataset, and therefore generalize: e.g. linear networks learn the67

Gaussian approximation, and circular convolutional networks learn the stationary Gaussian process68

approximation. In Finn et al. (2025), they analyze attention-based diffusion and provide evidence69

that adding a final self-attention layer promotes global consistency across distant regions, organizing70

locally plausible features into coherent layouts that move beyond purely patch-level mosaics. Related71

theoretical work further probes why well-trained diffusion models can generalize despite apparent72

memorization pressures (Biroli et al., 2024; J. Vastola, 2025; Chen, 2025). These results suggest that73

departures from exact empirical-score fitting—mediated by inductive biases (both architectural and74

training dynamics) can explain how diffusion models avoid pure memorization while maintaining75

visual plausibility (Ambrogioni, 2023). In this work, we study the memorization and generalization76

dynamics when we have access to the underlying distribution is tractable.77

Learning parity We focus on parity learning, a versatile testbed that has been widely adopted78

for understanding both the representational and learning aspects of neural networks (Hahn, 2020;79

Bhattamishra et al., 2022; Glasgow, 2024; Abbe et al., 2024, 2025). The hardness of parity depends80

on the number of bits that the parity is computed over, where more bits require a higher boolean81

sensitivity or larger weight norms in the case of neural networks. For Transformers specifically,82

learning parity requires growing the MLP norms (Liu et al., 2022; Hahn & Rofin, 2024) and the83

use of normalization layers (Hahn, 2020; Yao et al., 2021; Chiang & Cholak, 2022). Even when84

a network is sufficiently expressive, parity is computationally challenging to learn (Kearns, 1998;85

Barak et al., 2022; Edelman et al., 2023; Wen et al., 2024; Kim & Suzuki, 2025). In this work, we86

explored parity learning from generative modeling perspective, leveraging this well studied problem87

to characterize how much modern generative modeling framework, in particular diffusion, could88

learn these underlying structures.89
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3 Methods90

Figure 1: Schematics of the task and performance evaluation. A. Structure of the Group Parity
dataset and evaluation setup. Each D-dim, 6× 6 binary image is divided into G equal-sized groups
(here D = 36, G = 6), with each group sufficing even parity (even number of black pixel). DiT
models are trained on this dataset, where the generated samples are evaluated by the per group
accuracy, sample accuracy and memorization ratio of group and sample. B. Per-group parity accuracy
as a function of group size for DiT models with 3, 6, or 12 layers (6 heads, 384 d), compared to a
random baseline (dashed line), dataset size N = 4096. C. Sample-level parity accuracy for the same
models and group sizes.

Notation Define S+
d = {x |

∏d
i=1 xi = 1, xi ∈ {−1, 1}} to be the set of bit strings with even91

parity in a d-dimensional boolean cube {−1, 1}d; note that |S+
d | = 2d−1. For example, S+

3 =92

{(1, 1, 1), (−1,−1, 1), (−1, 1,−1), (1,−1,−1)}. Define P+
d (x) = |S+

d |−1
∑

y∈S+
d
δ(x − y) , be93

the mixture of delta measure at all points of the set S+
d . Further, we define (S+

d )m = S+
d × ...×S+

d ⊂94

{−1, 1}md, where the d bits in each of the m groups satisfy parity relation, and |(S+
d )m| = (2d−1)m.95

We denote the uniform measure corresponding to the set (S+
d )m, (P+

d )m. Define Ud as the uniform96

measure on d-dimensional Boolean cube.97

Dataset Design We construct samples x ∈ RD with length D = 36, every G elements are assigned98

to a group, and x ∈ (S+
G)D/G. Specifically, each group is sampled i.i.d. from the even parity string99

of length G, ∼ P+
G , and then the D/G groups are concatenated as a sample x (Fig.1A). Then we100

generate N samples as our training set, where we mandate all training samples to be unique by101

rejective sampling (though individual groups could repeats). The key design parameter for the dataset102

will be D,G,N . For diffusion training, we reshape each sample to a 6 × 6 pixel single channel103

image.104

Model Architecture As a generative modeling problem, we consider the dataset in the continuous105

space RD, and solve it with Gaussian diffusion models. Specifically, we used the continuous-time106

EDM diffusion framework (Karras et al., 2022), and used diffusion transformer (DiT) (Peebles & Xie,107

2023) as our function approximator with EDM preconditioning. We started with baseline version108

DiT-mini with 6 layers, 6 heads and hidden dimension 384, and varied the layers (in {3, 6, 12}) and109

sizes of the model to examine and effect of model capacity. We keep patch size as 1 to maximize the110

capacity of attention to model the relation between bits.111

Training On every dataset, we use Adam optimizer to train DiT models 106 steps , with learning112

rate 10−4 and batch size 256.113

Evaluation Throughout training, we generate samples with Heun’s 2nd order deterministic sampler114

(Karras et al., 2022), and evaluate them according to following criterion. First, we evaluate how far115

the samples are from boolean cube {−1, 1}D, and computed dℓ∞(x) = maxi ||xi| − 1|. We call the116

samples invalid when dℓ∞(x) > ϵ, and calculated the invalid fraction for various ϵ = 0.1, 0.01.117
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Figure 2: Memorization and Creativity in Parity Learning. Memorization ratio overlay on
accuracy, for different group size and DiT depth, at group level (A.) and sample level (B.), with
underlying bar plot the same as Fig.1 B.C. Red dashed line shows the memorization ratio of the
ground truth distribution (P+

G for groups, and (P+
G )D/G for samples); and blue dashed line shows

the memorization ratio of the chance distribution (UG for groups and UD for samples).

Next, we binarize each element of the sample to {−1, 1} and evaluate the binarized sample x̄118

according to the parity of groups and samples (Fig. 1A). For each group of G elements, we evaluate119

the correctness of parity of the group, i.e. group parity accuracy, with chance level 2−1. Then for120

the whole sample, we call it correct if the parity of every D/G group is correct, i.e. sample parity121

accuracy, for which the chance level is 2−D/G.122

Further, we examine the fraction of the generated samples or groups coincide with those in the123

training dataset. We term these the memorization ratio of group and samples. If we assume the model124

learned the true distribution i.e. uniform measure on (S+
G)D/G, then the chance level of sample125

memorization ratio will be N/(2G−1)D/G = N · 2−G−1
G D. If the model learned the uniform measure126

on the boolean cube, then the chance level of sample memorization will be N · 2−D.127

4 Results128

4.1 Parity learning depends on both rule complexity and model depth129

Effect of rule complexity. For small group sizes (G = 2, 3, 4), all DiT variants achieve near-perfect130

parity accuracy, indicating that parity rules among few bits are readily captured. However, as G131

exceeds 6, both per-group and sample-level accuracies (Figure 1B,C) decline sharply, with the132

per-group accuracy deteriorates towards chance level 0.5, and the sample level accuracy degrades133

towards chance performance at (1/2)D/G. This aligns with prior work highlighting the inherent134

difficulty of learning parity with many interacting bits (Kearns, 1998; Barak et al., 2022; Abbe et al.,135

2024).136

Effect of model depth. Model depth mitigates this difficulty: across G, deeper DiTs consistently137

outperform shallower ones in both metrics, while we kept head number 6 and latent dimension 384138

the same. Notably, a 12-layer DiT consistently achieves near-perfect sample and per-group accuracy139

for G = 6, while 3- and 6-layer models degrade substantially and only learns parity rules up to140

G = 4. Even for large G, deeper networks remain above chance, whereas shallower ones collapse to141

the chance level of UD. These results suggest limitation in shallow transformer of learning parity142

rules of many bits, and that greater depth enhances the ability to integrate information across many143

bits, increasing capacity for representing the global multiplicative interactions required for large-G144

parity rules.145

4.2 Memorization and creativity of parity learning146

When a model trained on finite data succeeds in generating samples consistent with a given parity147

rule, an immediate follow-up question is: how many of these samples are exact reproductions from148

the training set, and how many are genuinely novel? This relates directly to the notion of creativity in149

generative models (Kamb & Ganguli, 2024). Given the hierarchical nature of our data, novelty can150
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Figure 3: Learning dynamics of rule acquisition and memorization across parity complexities.
A. Training-time evaluation for DiT-mini (6L6H) on the G = 4, N = 4096 dataset. Invalid-sample
ratios decay rapidly, followed by an early, sharp rise in parity accuracy to near-perfect levels. Much
later, sample memorization ratio grows steadily until the end of training, following a small bump
in invalid ratio (EPS=0.01). B. Sample-level accuracy during training for datasets with group sizes
G ∈ 2, 3, 4, 6, 9, 12, 18, 36 (N = 4096, DiT-mini). Dashed lines indicate random-chance baselines
2−D/G. For small G, rule learning occurs via a sharp transition, with the transition point shifting
later as G increases. For larger G, accuracy rises above chance only at a much later stage, following
a gradual process driven primarily by memorization. C. Sample-level memorization ratio during
training for the same datasets, with dashed lines showing the expected memorization ratio under the
ground-truth distribution. Memorization emerges late in training, at similar time across group size G.

be evaluated at two levels: (1) the fraction of samples reproduced from the training set, and (2) the151

fraction of bit groups reproduced from the training set.152

At our standard dataset size of N = 4096, for G ≤ 12 the training set contains all valid even-parity153

groups. In this regime, novelty at the group level is impossible—any correct group must have154

appeared in training. The only possible form of creativity is combinatorial: assembling previously155

seen valid groups into novel combinations to form new valid samples.156

Combinatorial creativity when rule learning succeeds For small group sizes (G = 2, 3, 4), all157

model variants achieve near-perfect sample accuracy while generating a substantial fraction of novel158

correct samples via recombination (Figure 2B). Similarly, when trained on G = 6 dataset, over 50%159

of the 12-layer DiT’s generations are novel and correct, indicating strong generalization through160

recombination rather than pure memorization. On the other hand, the sample memorization ratio is161

still much higher than the ground truth distribution (P+
G )D/G (recall that D = 36), showing that the162

learned distribution still bias towards the combinations encountered in training set.163

Deeper models memorize more. Across all datasets and group sizes, deeper models consistently164

exhibit higher memorization ratios at both the group and sample levels. For G = 2, 3, 4, this165

means that, at matched sample accuracy, deeper models are less creative—generating fewer novel166

combinations—despite achieving the same correctness. This aligns with the broader observation167

that larger-capacity models tend to memorize more easily (Carlini et al., 2022; Tirumala et al., 2022;168

Morris et al., 2025).169

Memorization under partial rule learning. For G = 6, 9, 12, the training set still contains all170

valid groups, yet models fail to memorize them all—resulting in imperfect per-group accuracy (with171

the exception of the 12-layer DiT at G = 6, which learns the rule fully). This gap is possibly due to172

the sheer number of valid patterns (2G−1) can exceed the model’s memorization capacity for groups.173

For G = 18, 36, the training set covers only a small fraction of all valid groups, so even an optimal174

generalizing distribution would have group-level memorization ratios well below 1. Nonetheless, we175

observe ratios substantially above baseline, indicating a preference for groups seen in training-set over176

unseen valid ones. The residual gap between parity accuracy and memorization ratio is consistent177

with chance-level correctness for non-memorized groups (i.e., ≈ 50% parity accuracy in that subset).178
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4.3 Learning dynamics of generalization and memorization179

Next, we examined the learning dynamics of generalization and memorization.180

Sharp Rule-Learning Transition Precedes Memorization. Across all datasets where the parity181

rule is successfully acquired (small to moderate G), we observe a clear temporal separation between182

the onset of learning parity rule and memorization (Fig. 3A). Initially, the fraction of invalid samples183

drops rapidly, and sample- and group-level parity accuracies undergo an abrupt, early transition from184

chance level to near-perfect performance. During this early phase, memorization ratios remain near185

baseline, indicating that the model has learned to produce valid, rule-conforming samples without186

simply reproducing training examples. Only much later in training does memorization begin to187

increase, suggesting that the model first discovers a generative rule-consistent model (P+
G )D/G and188

subsequently drifts toward reproducing specific training samples within it. This clear separation in189

timescales reinforces prior suggestions that early stopping during diffusion training can preserve the190

generalizing solution before memorization dominates (Bonnaire et al., 2025).191

Higher-bit parity delays rule-learning transition When the group size G increases, the sharp192

accuracy transition is systematically delayed (Fig. 3B). For small G (≤ 4), this jump in accuracy193

occurs within the first few thousand steps. In contrast, for large G, accuracy remains at chance for194

an extended period before eventually rising. In extreme cases (e.g., G ≥ 18), this increase is not195

due to genuine rule learning but rather to a slow, memorization-driven improvement at late training196

stages. This pattern reflects the greater difficulty of learning high-order parity relations, which require197

integrating information multiplicatively across many bits.198

Sample memorization emerges at similar times across G. Interestingly, the onset of sample-199

level memorization is largely independent of G (Fig. 3C). Across all datasets, memorization begins200

only after a prolonged period of stable accuracy—whether that accuracy was achieved through201

genuine rule learning (small G) or remains near chance (large G). The synchronized late rise in202

memorization suggests that it is governed more by total optimization time and model capacity than203

by rule complexity, consistent with a gradual overfitting process that unfolds after the model has204

stabilized its score estimates for the training distribution.205

Figure 4: Learning dynamics of rule acquisition and memorization across dataset size. A.
Dynamics of sample parity accuracy across dataset scale, at G = 2, DiT-mini. B. C. Dynamics
of sample memorization ratio across dataset scales, the dynamics are plotted as a function of step
(B.) and step per sample (step x batch size/ dataset size) (C.). Colored dashed lines denotes the
memorization ratio expected from the ground truth distribution.

4.4 Scaling law of generalization and memorization206

Is the difficulty of rule learning due to limited dataset size? We next investigate how dataset size N207

affects the dynamics of rule learning and memorization (Fig. 4, Fig. 5).208

Rule learning dynamics are relatively invariant to dataset size. Across dataset scales ranging209

from N = 1,024 to N = 65,536, sample-level accuracy follows a similar trajectory as a function of210

training step (esp. nearly identical for G = 2, 3 , Fig. 4A). All curves exhibit the same early, sharp211
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transition from chance to near-perfect accuracy, indicating that the onset and speed of rule acquisition212

are essentially independent of the number of training samples—at least for small G where the rule213

is consistently learnable (Fig. 6 7 for all group sizes G). When rule complexity is on the edge of214

learnability (G = 6), increasing dataset scale can help or hinder rule learning (Fig. 6).215

Memorization is delayed by larger datasets. In contrast, sample-level memorization shows a216

strong dependence on dataset size (Fig. 4B). Across rule complexity G, larger datasets consistently217

postpone the onset of memorization to later training steps, Specifically, at our largest dataset scales218

(N = 16384, 65536), excessive memorization do not happen, and the memorization ratio stays at the219

expected level from ground truth. When we rescaled each memorization curve by N , (Fig.4C), the220

memorization curves align well as a function of “steps per sample” (i.e. step × batch size /N ). This221

alignment suggests that the key parameter governing sample memorization is the number of gradient222

steps per training example rather than the raw step count. On our dataset, this memorization happens223

around ∼ 104 steps per example.224

Implications for training strategy. These results suggest that, for learnable rules, increasing dataset225

size does not hinder the model’s ability to acquire the underlying structure but can substantially226

extend the generalization phase before overfitting begins. This reinforces the view—also supported227

by our temporal scale separation results—that early stopping can preserve a generalizing solution,228

and that larger datasets naturally widen the safe window before memorization dominates.229

5 Why Diffusion Transformers Struggle with Parity230

We explored this question through the corresponding energy of parity.231

Continuous-space Energy model of Parity Consider the following energy,232

Ed(x) =

d∑
i=1

(x2
i − 1)2 + λp

( d∏
i=1

xi − 1
)2

, λp > 0 (1)

The first term encourages x to be on the boolean cube, and the second term encourages the parity to233

be 1.The set of all energy minima are the bit sequence with correct parity argminx Ed(x) = S+
d .234

Further, one can show that pd(x;β) ∝ exp(−βEd(x)) when β → ∞, pd(x) → P+
d (x), as the235

distribution converged to a uniform distribution over the minima.236

Thus, at low noise regime (β → ∞), the score network in the diffusion model should be approximating237

the gradient of the energy, i.e. the score reads238

∇ log pd(x;β) = −β∇xEd(x) (2)

∇xi
Ed(x) = 4xi(x

2
i − 1) + 2λp

d∏
j=1,j ̸=i

xj(

d∏
j=1

xj − 1) (3)

Notably, the 1st term is a function local to the bit, the 2nd term in the score depends on the product of239

all d bits, which requires aggregation and broadcasting of global information.240

Implication for DiT The local term can be easily learned by the MLP modules which operates241

on individual bits. Learning the local term effectively push samples onto the boolean hypercube,242

thus minimize the invalid samples. As we showed empirically, the EPS deviation decays rapidly, so243

learning this term is efficient and easy.244

However, the 2nd term requires multiplication of all G bits. If the attention is becoming one-hot, then245

each layer only aggregates product information of two bits. Thus deeper transformer models can246

aggregate more bits through sequential application of attention, explaining their strength in learning247

rules of higher G. In Appendix B.1, we construct energy functions that correspond to the multi-head248

self-attention layers and MLP layers which make this point more concrete.249

6 Discussion250

We introduced a controlled group-parity testbed to probe whether diffusion models can learn and251

generalize precise rules of different global levels. Across variations in model depth, dataset size,252

7



and rule complexity (G), we found a clear learnability threshold that shifts with depth; a consistent253

temporal separation between an early rule-learning transition and later memorization; before memo-254

rization start, models learning low rule complexity exhibit combinatorial creativity and discover the255

ground truth distribution; further the memorization onset time scale linearly with dataset size. Our256

energy/score analysis tied the observed depth dependence to the degree-G multiplicative interaction257

term in the parity score, which is misaligned with the predominantly pairwise interactions that a258

single attention block can directly encode.259

Score complexity and spectral bias. The parity score naturally decomposes into a local term260

and a global multiplicative term
∏G

j=1 xj , whose polynomial degree grows with G. In the261

Fourier/Walsh–Hadamard basis, higher-degree interactions correspond to higher-frequency compo-262

nents, and it is well established that neural networks exhibit a spectral bias, fitting low-frequency263

components before high-frequency ones (Canatar et al., 2021; Wang & Pehlevan, 2025). This frame-264

work offers a natural explanation for our learning dynamics: small-G components emerge early in265

training, while large-G components appear only much later—if they appear at all. When the latter266

are not learned from data, accuracy improvements in late training tend to come from memorization267

rather than genuine rule acquisition. A more formal score-complexity analysis could help predict the268

point at which models shift from generalizing to overfitting, and explain how architectural constraints269

shape this transition.270

Implications for natural data. Our findings suggest that relations involving many-way interactions271

are inherently difficult for current diffusion architectures. In naturalistic settings, this may underlie272

the difficulty of learning certain abstract reasoning rules. For example, prior studies on the RAVEN273

progression matrices found that XOR-type relations over multiple attributes are especially hard for274

diffusion models (Wang et al., 2024); our results indicate that the same complexity–spectral-bias275

bottleneck may be responsible. The broader implication is that scientific or physical constraints276

depending on large-scale multiplicative structure—such as conservation laws involving many coupled277

quantities—may not be faithfully learned without targeted architectural or training interventions.278

Pathways to improved rule learning. The gap between theoretical capacity and observed per-279

formance invites several possible remedies. One is to modify the architecture to enable global280

broadcasting of information—through dedicated register tokens, global memory units, or structured281

multiplicative interactions—so that the model can aggregate and disseminate the features required for282

large-G parity in a single step. Another is to enrich training with auxiliary objectives that explicitly283

require detecting and representing parity-like dependencies, such as masked group-parity prediction,284

to encourage the formation of suitable internal representations. Finally, a curriculum that gradually285

increases G during training could scaffold the acquisition of higher-order rules, allowing the network286

to build on simpler cases before tackling more complex ones.287

Broader outlook. Although parity is synthetic, it isolates a fundamental limitation: global rules with288

high interaction order are not well aligned with the inductive biases of current diffusion transformers.289

Addressing this limitation is critical for applications where rule adherence is as important as perceptual290

fidelity, including symbolic reasoning, structured design, and scientific modeling. Our group-parity291

testbed provides a controlled setting in which to explore both the failure modes and potential solutions,292

and offers a stepping stone toward architectures that can internalize and apply abstract, combinatorial293

rules from data.294
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A Extended Results378

Figure 5: Memorization and Creativity in Parity Learning across dataset scales. Memorization
ratio overlay on accuracy, for different group size and training dataset scale, at group level (A.) and
sample level (B.), with similar format as Fig. 2. Red solid line shows the memorization ratio of the
ground truth distribution (P+

G for groups, and (P+
G )D/G for samples); and blue solid line shows the

memorization ratio of the chance distribution (UG for groups and UD for samples). Black dashed line
shows the chance level accuracy.
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Figure 6: Learning dynamics of rule acquisition and memorization across dataset size, G =
2, 3, 4, 6. Left. Dynamics of sample parity accuracy across dataset scale, DiT-mini. Mid. Right.
Dynamics of sample memorization ratio across dataset scales, the dynamics are plotted as a function
of step (Mid.) and step per sample (step x batch size/ dataset size) (Right.). Colored dashed lines
denotes the memorization ratio expected from the ground truth distribution. Similar format as Fig.4.
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Figure 7: Learning dynamics of rule acquisition and memorization across dataset size, G =
9, 12, 18, 36. Similar format as Fig.6 and 4.
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B Extended theory note379

B.1 Connection of Self-Attention and Energy380

There is a correspondence between the network architecture and the form of distribution which it can381

represent exactly at a particular depth. The best example of this is the well known correspondence382

between a Gaussian distribution and a linear score (Wang & Vastola, 2024). In our case, the difficulty383

of learning binary patterns can be in part explained by the misalignment between the score which a384

multi-headed attention can express and the true score equation 2 of our parity distribution.385

Consider a multi-head attention operation. Let x1, . . . , xT ∈ Rd be the token features (for our 6× 6386

binary images with patch size 1 we have T = 36). For head h ∈ {1, . . . ,H}, define queries and387

keys q(h)i = W
(h)
q xi, k

(h)
j = W

(h)
k xj , with head dimension dh. We simplify our notation and define388

W = 1√
dh
W⊤

q Wk.389

Consider the multi-headed attention energy390

Emulti-head attention({xi}i∈I) =

H∑
h=1

T∑
i=1

log

T∑
j=1

exp(x⊤
i Whxj) (4)

Taking the gradient, we find391

∇XEmulti-head attention(X) = −
∑
h

(
Wh X A⊤

h + W⊤
h X Ah

)
, (5)

Where Aij :=
exp

(
x⊤
i W xj

)
∑T

k=1 exp
(
x⊤
i W xk

) . We combine tokens X = [x1, x2, . . . , xT ] as a matrix in Rd×T .392

Then A ∈ RT×T is the attention matrix with entries Aij . In the DiT, it is not necessarily the case that393

the value matrix is tied to our key matrices, but for simplicity, we assume that it is.394

For a full transformer block, we require also an MLP energy form. Consider the energy395

E(x) =

m∑
i=1

ϕ
(
w⊤

i x+ b1,i
)
+ b⊤2 x, (6)

where x ∈ Rd, wi ∈ Rd, b2 ∈ Rd, and b1,i ∈ R. Then396

∇xE(x) =

m∑
i=1

wi ϕ
′(w⊤

i x+ b1,i
)
+ b2 (7)

Thus, we approximate the overall transformer block energy (ignoring LayerNorm, residuals, and397

positional terms) by398

Etransformer block(X) = ESA(X) + EMLP(X) (8)

=

H∑
h=1

T∑
i=1

log

T∑
j=1

exp
(
x⊤
i Wh xj

)
+

T∑
i=1

(
b⊤xi +

m∑
k=1

ϕ
(
w⊤

k xi + b1,k
))

(9)

Recall that the energy function equation 1 contains interaction terms of degree D. The second term399

is multiplicative across all coordinates and flips sign with any bit. By contrast, each coordinate of400

the attention-score is a sum of linear transforms of other tokens, i.e., it is assembled from pairwise401

inner products. Consequently, a single attention layer cannot represent the global monomial
∏d

j=1 xj402

exactly, while multiple layers can create higher-order interactions compositionally, which helps to403

explain the improvements seen from increasing the depth of the network.404

14


	Motivation
	Backgrounds
	Methods
	Results
	Parity learning depends on both rule complexity and model depth
	Memorization and creativity of parity learning
	Learning dynamics of generalization and memorization
	Scaling law of generalization and memorization

	Why Diffusion Transformers Struggle with Parity
	Discussion
	Extended Results
	Extended theory note
	Connection of Self-Attention and Energy


